Регистрация
Your shopping cart is empty!
Andrey Ulyanin

Andrey Ulyanin

Состав летучих соединений в свежих зернах Робуста и Арабика неодинаков на различных стадиях созревания. Методами ГХ/МС в зеленых зернах кофе обнаружено лишь 14 соединений, а в спелых зернах обоих видов - свыше 40 летучих веществ. При этом отмечен высокий уровень терпенов и сесквитерпенов - лимонена, картофиллена, гумулена, α-пинена, 2-пентилацетата, изопентанола, 2-гептанола и др. При высушивании зерен концентрация этих соединений снижается и появляется значительное количество продуктов их окисления. Потенциальными ароматическими веществами необжаренного кофе Арабика могут быть 3-изобутил-2-метоксипиразин, 2-метокси-3,5-диметилпиразин, этил-2-, этил-3-метилбуритат и 3-изопропил-2-метоксипиразин. Наиболее сильным запахом обладает 3-изобутил-2-метоксипиразин, определяющий наличие горохового оттенка в запахе необжаренного кофе. В процессе обжаривания концентрация в кофе 3-изобутил-2-метоксипиразина не изменяется, а таких ароматических веществ, как метиональ, 3-гидрокси-4,5-диметил-2(5Н)-фуранон, ванилин, (Е)-β-дамасценол, 4-винил- и 4-этилгваякол, - увеличивается. Б. В. Артемьев исследовал газовую фазу жареного молотого кофе Колумбийский с помощью метода анализа пищевых запахов.

 

Состав газовой фазы жареного молотого кофе Колумбийский
ВеществоСодержание, % по массе в пересчете на пропанол
Пентан 0,5
Этанол 23,6
Метилформиат 2,9
Фуран 2,0
Пропаналь 3,4
Пропанол
+ диметилсульфид
+ метилацетат
13,4
2-Метилпропаналь 4,9
2-Метилфуран 2,9
Бутаналь 0,2
Бутанол 2,6
2,3-Бутадион 1,5
2-Метилбутаналь 2,2
3-Метилбутаналь 4,2
2,5-Диметилфуран 0,3
Тиофен менее 0,1
Бутилформиат 0,1
2,4-Пентадион 0,2
Пиридин 0,4
2-Метилпиридин
+ 3-метилпиридин
+ 4-метилпиридин
+ 2-гептанол
11
2-Пентанон 0,1
Пентанал 0,2
Амилацетат 0,1
Пиразин 3,9
Фурфурол 4,6
Фурфуриловый спирт 0,1
Метоксибензол 0,2
Бензальдегид 0,5
2,6-Диметил-2,7-октадиен-6-ол 0,1

 

При использовании этого метода для идентификации веществ добавляли вещества-метчики в конденсат газовой фазы перед его дозировкой в колонку, учитывая совпадение на хроматограмме пика X газовой фазы продукта с пиком Y вещества-метчика (проявление их совместного пика X + Y. Пики X и X + Y сравнивали по площади и величине ГЖХ-удерживания. Путем анализов на трех колонках идентифицировано 34 вещества газовой фазы жареного молотого кофе Колумбийский, составляющие 86% суммы душистых веществ этой фазы.

Содержание ароматообразующих веществ определяют методами ГЖХ/МС, ГЖХ-спектроскопии с преобразованием Фурье и ГЖХ-атомно-эмисионной спектроскопии с упором на альдегиды и кетоны, серо-, водород- и кислородсодержащие компоненты. Чаще результаты анализа аромата кофе получают при изучении газовой фазы экстрактов, выделенных CO2 в сверхкритическом состоянии и дисцилляцией при нагревании. Состав ароматических веществ кофейного напитка, полученного завариванием 60 г обжаренного кофе Арабика (Кения) или Робуста (Индонезия) в 1 л кипящей воды, изучали следующим образом. Осуществляли дисцилляцию с последующей непрерывной экстракцией ароматических веществ. Затем экстракт подсушивали Na2SO4 и концентрировали на колонке Vireux. После разделения ароматических веществ на колонке с силикагелем на 6 фракций различной полярности проводили анализ каждой методами ГХ или ГХ/МС. Всего обнаружено 400 веществ, из них 170 имели концентрации в интервале 1-150 и 70 - в интервале 1-500 мкг/кг. Из кофе Робуста в кофеный напиток извлекается 75% ароматических веществ обжаренного кофе, а из сорта Арабика - только 55%. В 1 л кофеного наптка содержится 25-50 мг ароматических веществ. По результатм исследования 2-метилизоборнеола, обусловливающего типичный аромат кофе Робуста, методом ГХ/МС в изучаемых образцах зеленых зерен обнаружено 0,03-0,3 кмг/кг этого соединения. Однако оно совершенно исчезало после обработки зеленого кофе паром или обжаривания. Формирование аромата кофе происходит при обжаривании. В частности, количество фурфурилмеркаптана возрастает с увеличением длительности этого процесса. Энергия активации для образования фурфурилмеркаптана составляет 50 ккал/моль при pH 4. Изменение содержания летучих веществ при хранении горячего напитка кофе изучают методом газовой хроматорафии. Для проведения определений используют парофазное устройство LSC 2000 и газовый хроматограф с ДИП, пламенно-фотометрическим детектором и колонкой (длиной 25 м, диаметром 0,32 мм), заполненной SE-54. В результате анализа получают относительные величины концентраций метилдисульфида, характеризующих степень окисления напитка. Концентрация метилформиата является индикатором протекания гидролитических реакций. Оптимизацию условий опредеения диметилсульфида, сероуглерода, тиофена, метилдисульфида и других серосодержащих соединений в аромате кофе проводят методом ГХ. Обжаренный, растовримый ароматизированный и растворимый неароматизированный кофе содержат диметилсульфида соответственно 3,83, 21,59 и 0,013 нг/мл, сероуглерода 2,81, 6,46 и 0,017, тиофена 0,73, 3,57 и 0,011, метилдисульфида 0,79, 2,74 и 0,038 нг/мл. Для определения ароматических веществ с интенсивным запахом кофе разработана методика анализа содержания 2-фурфурилтиола, 2-этил-3,5-диметипиразина, 2,3-диэтил-5-метилпиразина и 2-метилизоборнеола в кофе Арабика и Робуста. Первые три вещества экстрагируют трижды из 40-120 г обжаренного кофе диэтиловым эфиром, затем объединенные экстракты концентрируют и извлекают летучие вещества дистилляцией. 2-Метилизоборнеол выделяют путем дистилляции с одновременной экстракцией из 500 г зеленого кофе аналогичным способом. Анализ проводят методом ГХ/МС с ионизацией пробы электронным ударом. Конценрация 2-фурфурилтиола в обжаренном кофе Робуста составляет 1,956 мг/кг, а сорта Арабика - 1,708 мг/г. Содержание 2,3-этил-5-метилпиразина в этих видах кофе отличается более значительно, чем 2-фурфурилтиола, - соответственно 824/492 и 233/112 мк/кг. При заварке в кофейный напиток извлекается 90% 2-фурфурилтиола и 60-64% 2-этил-3,5-диметилпиразина и 2,3-диэтил-5-метилпиразина. После 40 суток хранения при комнатной температуре концентрация 2-фурфурилтиола в кофе Арабика уменьшается до 0,32 мг/кг, а в кофе Робуста - до 0,79 мг/кг. Содержание 2-метилизоборнеола в зеленом кофе Робуста из Колумбии и Бразилии составляло соответственно 1,28 и 0,74 мкг/кг, а в кофе Арабика - 0,42 и 0,08 мкг/кг. Для извлечения полезных ароматических веществ, таких как диацетил- и ацетальдегиды, из термогидролизаторов кофе, содержащих вещества с неприятным запахом, используют стеклянную колонку (длиной 2,1 м и диаметром 10,2 см), заполненную 4,5 кг неполярного микропористого сорбента на основе полистиролдивинилбензола, при 20°C и скорости прокачки термогидролизата кофе 40 см³/мин. Сбор элюата осуществляют до появления неприятного запаха, например, фурфурола. Полученный элюат, обладающий масляным, легким фруктово-винным запахом, может быть использован для аромата традиционного растворимого кофе. Исследование содержания основных компонентов аромата обжаренного кофе проводят методом разбавления изотопов в сравнении с дейтерированными образцами (2-фурфурилтиол, 2-этил-3,5-диметилпиразин, ванилин, замещенные гваяколы и др.). В результате определяют также величины порога обоняния этих веществ; при этом отмечены различия аромата изученных сортов кофе в связи с разной концентрацией основных компонентов. Методом ГХ/МС проводят определение содержания ароматических веществ в кофейных напитках, приготовленных из обжаренных зерен кофе Арабика и Робуста. Наиболее интенсивным запахом из 22 найденных ароматических веществ обладают 2-фурфурилтиол, 3-меркапто-3-метилбутилформиат, метантиол, β-дамасцеон, метилпропаналь и 3-метилбутаналь. Степень извлечения 17 ароматических веществ из зерен кофе в кофейных напитках различна: для полярных веществ (например, гваякол) - 75-100%, неполярных (например, β-дамасцеон) - только 10-25%. Методами ГХ/МС с применением колонки (длиной 60 м и диаметром 0,25 мм) с Supelcowax 10 при программировании температуры от 40 до 200 °C со скоростью 3°C/мин, также ольфактометрии проводят определение ароматических веществ, выделенных из обжаренного цикория дисцилляцией с паром при одновременной экстракции и динамическом отделении паровой фазы. При первом способе выделения ароатических веществ идентифицировано 92 соединения, при втором - 64. Обнаружены также некоторые пиразины и N-фурфурилпироллы. Аромат обжаренного цикория обусловлен в основном присутствием 2-этил-3,5-диметилпиразина, 2,3-бутандиона, 1-октен-3-она, 3-метилбутаналя и одним неидентифицированным соединением, обладающим запахами цикория и жженого сахара. Для исследования ароматическихвеществ, обусловливающих аромат обжаренного кофе Арабика, из основных летучих соединений составляют модельные смеси, аромат которых сравнивают с натуральным образцом, используя метод исключения из модельной смеси одного или нескольких соединений. Обнаружено, что 2-фурфурилтиол, 4-винилгваякол, ряд алкилпирозинов, фуранонов, ацетальдегид, пропаналь, метилпропаналь, 2- и 3-метилбутаналь обусловливают типичный аромат кофе Арабика. При выборе оптимальных условий анализа летучих компонентов в измельченном обжаренном кофе Арабика при статическом методе отбора проб исследуют два фактора - равновесные время и температуру. При этом выбирают три значения температуры: 60, 80 и 90°C. Наибольшее количество летучих соединений экстрагируется при 90°C, а затем при 80 и 60°C, хотя их набор при всех значениях температуры идентичен. Экстракцию летучих компонентов изучают при семи значениях времени: 30, 45, 60, 80, 100, 120 и 150 мин. Оптимальное значение времени выбирают в зависимости от химического состава летучих компонентов. В результате идентифицировано 122 компонента, включая 26 фуранов, 20 кетонов, 20 пиразинов, 9 спиртов, 9 альдегидов, 8 эфиров, 6 пироллов, 6 тиофенов, 4 серосодержащих компонента, 3 бензольных компонента, 2 фенольных компонента, 2 пиридина, 1 оксазол, 1 лактон, 1 алкан, 1 алкен и 1 кислоту. 

В обжаренном кофе идентифицировано более 350 ароматических веществ. Например, по данным немецких ученых, сумма абсолютных концентраций 2-метилпропана, 3-метилбутанола, диацетила и 2-метилфурана составляла (110±21) мг на 1 кг продукта. В эфирном масле кофе найдено значительное число серсодержащих летучих компонентов типа фурфурилмеркаптана, фурфурилметилсульфида, фурфурилметилдисульфида. Эти компоненты в сильной степени влияют на аромат - основной критерий качества кофе. В связи с этим уровень летучих ароматообразующих веществ следует рассматривать как важнейший фактор для оптимизации процесса обжаривания, контроля качества свежего кофе и оценки условий молотого кофе. 

Из органических кислот в сырых кофейных зернах обнаружены лимонная, яблочная, малеиновая, уксусная и щавелевая. Причем для разных видов и сортов их состав и содержание различны. Кислотность сырого кофе различных ботанических видов и сортов изменяется от 2,4 до 4°T. При длительном (3-5 лет) хранении сырого кофе в нормальных условиях кислотность возрастает незначительно. Содержание свободных жирных кислот в сырых кофейных зернах высших сортов составляет 0,5-3%, в зернах более низкого качества - до 20%. Преобладающими являются линолевая, пальмитиновая и олеиновая кислоты. Сырые кофейные зерна содержат минеральные вещества. С помощью атомно-абсорбционной спектрофотометрии в зернах кофе определен количественный состав минеральных веществ (мг%): калий - 1712-1750 магний - 142-176 кальций - 76-120 натрий - 2,3-17 железо - 2,1-10 марганец - 1,1-9,8 рубидий - 0,6-4,2 цинк - 0,5-3,2 медь - 0,6-2,3 стронций - 0,4-1,3 а также следы хрома, ванадия, бария, никеля, кобальта, свинца, молибдена, титана и кадмия. Содержание отдельных минеральных элементов зависит от сорта кофе, района произростания, способа обработки, вида вносимых в почву минеральных удобрений, а также применяемых средств защиты растений. Определенной зависимости между количеством минеральных веществ и качеством напитка из кофе не существует. Однако считается, что содержание цинка, марганца и рубидия в сырых зернах обусловливает лучшие свойства готового кофе. В сырых кофейных зернах содержание минеральных веществ составляет 3-4,5%. Преобладающим элементом является калий (около половины), затем следуют магний и кальций (примерно в 10 раз меньше), натрий, железо, марганец и др. Считается, что повышенное содержание цинка, марганца и рубидия способствует улучшению свойств напитка. Например, описано применение атомно-эмиссионной спекроскопии с индукционной плазмой для исследования кинетики водной экстракции калия, магния, марагнца и фосфора из образцов кофе. Во время обжаривания кофе содержание минеральных веществ повышается до 5-7%, что связано с большими потерями сухого вещества. 

В сыром кофе трех основных разновидностей (Арабика, Робуста и Либерика) белковые вещества содержатся почти в одинаковом количестве (аминный азот – 1,55-1,63%, общее содержание белка – 9,69-10,19%). Аминокислотный состав сырого кофе исследуется с помощью жидкостной ионообменной хроматографии, а их количество определяют путем сравнения площадей пиков на хроматограмме исследуемых образцов, а также площадей пиков калибровочной смеси аминокислот. Разделение и идентификацию аминокислот кофе проводят также при помощи электрофореза и тонкослойной хроматографии. В состав белков кофе входит 20 аминокислот, в числе которых глутаминовая, аспарагиновая, глицин и лейцин. В зернах кофе обнаружена также γ-аминомасляная кислота, а в сырых зернах кофе вида Арабика и гибрида Арабики с Робустой найдена пипеколиновая кислота, которая в сыром кофе других разновидностей не была выявлена. Кофейные зерна вида Либерика по аминокислотному составу не отличается от других разновидностей кофе. В целом установлено, что по составу аминокислот кофе видов Арабика, Канифора и Либерика практически одинаков, а по содержанию заметно различается, что объясняется условиями произрастания. В обжаренном кофе белки содержат тот же самый состав аминокислот, но количество многих из них существенно уменьшается (серина – в 3 раза, глицина – в 2 раза и т.д.). Общее содержание белков снижается примерно на 15%. Скорее всего, после обжаривания в кофе содержатся не белки, а белковоподобные вещества, являющиеся продуктами взаимодействия белков или их фрагментов с углеводами, фенольными соединениями и т.п. В сырых зернах кофе обнаружено высокое содержание свободных аминокислот. Найдено свыше 1% фенилаланина, более 0,6% глутаминовой кислоты. Но в процессе обжаривания свободные аминокислоты исчезают фактически полностью, обнаруживаются, только если следы аспарагиновой и глутаминовой кислот, треонина, серина, валина. Очевидно, что свободные аминокислоты в первую очередь вступают в сахароаминные и хинониминные реакции, участвуя в образовании цвета и формировании аромата кофе. Немецкий ученый Клечкус, проанализировав водорастворимые меланоидины кофе с помощью жидкостной хроматографии, установил, что их молекулярная масса колеблется от 3500 до 100 000. Причем доля высокомолекулярных продуктов меланоидинообразования возрастала с увеличением степени обжаривания. С помощью метода ГХ/МС в обжаренном кофе Робуста идентифицировано два основных компонента, ответственных за специфический запах продукта: 2-этил-3,5-диметилпиразин и 2-этенил-3-этил-5-метилпиразин. Пороговое значение запаха (0,014 нг/л) новых пиразинов аналогично 2-этил-3,5-диметил- и 2,3-диэтил-5-метилпиразину. В кофе также обнаружен 3-этинил-2-этил-5-метилпиразин, у которого пороговое значение запаха в 8000 раз выше, чем у 2-этенил-3-этил-5-метилпиразина. После добавления HBr удалось выделить два изомера этенилэтилметилпиразина и определить их количество с помощью капиллярного газового хроматографа. Соотношение содержания этих изомеров в кофе равно 1:1. В других исследованиях образование различных метилпиразинов при обжаривании кофе оценивали после их отгонки с паром и определения методом ГХ. В кофе были обнаружены 2-метил-, 2,3-диметил, 2,6-диметил, триметил- и тетраметилпиразины. Основным его компонентом был 2-метилпиразин: его концентрация в зернах превышала 2000 мкг на 100 г кофе в зависимости от продолжительности и температуры обжаривания, а также от сорта зерен. Отмечена корреляция между содержанием метилпиразинов и органолептическими характеристиками обжаренного кофе. Была проведена идентификация пяти дикетопиперазинов пролинового типа в водных экстрактах белков обжаренного кофе и в самом обжаренном кофе. Выделение этих веществ включало гельхроматографию и экстракцию хлороформом. При изучении заваренного обжаренного кофе применяли также хроматографию с полиамидной колонкой. Идентификацию выполняли с помощью МС. Оба метода с неоспоримой очевидностью показали присутствие в кофе дикетопиперазинов. 

В сыром кофе трех основных разновидностей (Арабика, Робуста и Либерика) белковые вещества содержатся почти в одинаковом количестве (аминный азот – 1,55-1,63%, общее содержание белка – 9,69-10,19%). Аминокислотный состав сырого кофе исследуется с помощью жидкостной ионообменной хроматографии, а их количество определяют путем сравнения площадей пиков на хроматограмме исследуемых образцов, а также площадей пиков калибровочной смеси аминокислот. Разделение и идентификацию аминокислот кофе проводят также при помощи электрофореза и тонкослойной хроматографии. В состав белков кофе входит 20 аминокислот, в числе которых глутаминовая, аспарагиновая, глицин и лейцин. В зернах кофе обнаружена также γ-аминомасляная кислота, а в сырых зернах кофе вида Арабика и гибрида Арабики с Робустой найдена пипеколиновая кислота, которая в сыром кофе других разновидностей не была выявлена. Кофейные зерна вида Либерика по аминокислотному составу не отличается от других разновидностей кофе. В целом установлено, что по составу аминокислот кофе видов Арабика, Канифора и Либерика практически одинаков, а по содержанию заметно различается, что объясняется условиями произрастания. В обжаренном кофе белки содержат тот же самый состав аминокислот, но количество многих из них существенно уменьшается (серина – в 3 раза, глицина – в 2 раза и т.д.). Общее содержание белков снижается примерно на 15%. Скорее всего, после обжаривания в кофе содержатся не белки, а белковоподобные вещества, являющиеся продуктами взаимодействия белков или их фрагментов с углеводами, фенольными соединениями и т.п. В сырых зернах кофе обнаружено высокое содержание свободных аминокислот. Найдено свыше 1% фенилаланина, более 0,6% глутаминовой кислоты. Но в процессе обжаривания свободные аминокислоты исчезают фактически полностью, обнаруживаются, только если следы аспарагиновой и глутаминовой кислот, треонина, серина, валина. Очевидно, что свободные аминокислоты в первую очередь вступают в сахароаминные и хинониминные реакции, участвуя в образовании цвета и формировании аромата кофе. Немецкий ученый Клечкус, проанализировав водорастворимые меланоидины кофе с помощью жидкостной хроматографии, установил, что их молекулярная масса колеблется от 3500 до 100 000. Причем доля высокомолекулярных продуктов меланоидинообразования возрастала с увеличением степени обжаривания. С помощью метода ГХ/МС в обжаренном кофе Робуста идентифицировано два основных компонента, ответственных за специфический запах продукта: 2-этил-3,5-диметилпиразин и 2-этенил-3-этил-5-метилпиразин. Пороговое значение запаха (0,014 нг/л) новых пиразинов аналогично 2-этил-3,5-диметил- и 2,3-диэтил-5-метилпиразину. В кофе также обнаружен 3-этинил-2-этил-5-метилпиразин, у которого пороговое значение запаха в 8000 раз выше, чем у 2-этенил-3-этил-5-метилпиразина. После добавления HBr удалось выделить два изомера этенилэтилметилпиразина и определить их количество с помощью капиллярного газового хроматографа. Соотношение содержания этих изомеров в кофе равно 1:1. В других исследованиях образование различных метилпиразинов при обжаривании кофе оценивали после их отгонки с паром и определения методом ГХ. В кофе были обнаружены 2-метил-, 2,3-диметил, 2,6-диметил, триметил- и тетраметилпиразины. Основным его компонентом был 2-метилпиразин: его концентрация в зернах превышала 2000 мкг на 100 г кофе в зависимости от продолжительности и температуры обжаривания, а также от сорта зерен. Отмечена корреляция между содержанием метилпиразинов и органолептическими характеристиками обжаренного кофе. Была проведена идентификация пяти дикетопиперазинов пролинового типа в водных экстрактах белков обжаренного кофе и в самом обжаренном кофе. Выделение этих веществ включало гельхроматографию и экстракцию хлороформом. При изучении заваренного обжаренного кофе применяли также хроматографию с полиамидной колонкой. Идентификацию выполняли с помощью МС. Оба метода с неоспоримой очевидностью показали присутствие в кофе дикетопиперазинов. 

На долю углеводов приходится 50-60% общей массы сырых кофеных зерен. В состав углеводов кофе входят сахароза (6-10%), целлюлоза (5-12%), пектиновые вещества (2-3%) и высокомолекулярные полисахариды (клетчатка, лигнин и др.). Установлено, что основным водорастворимым компонентом высокомолекулярных полисахаридов сырого кофе является арабиногалактан (2-5?). Кроме того, из кофейных зерен выделены глюкогалактоманнан, галактоза, манноза и арабиноза. Долгое время считалось, что в сыром кофе отсутствуют свободные моносахара (глюкоза и фруктоза), однако исследованиями установлено, что в зернах кофе вида Арабтка преобладает сахароза, а вида Каниформа (Робуста) - редуцирующие сахара. При жидкостной хроматографии в 80%-ных водных растворах этилового спирта сырых зерен кофе Арабика из Эфиопии и Бразилии наряду с сахарозой обнаружены и количественно определены фруктоза, α-глюкоза, β-глюкоза и два сахара не идентифицированны. В целом общее количество редуцирующих сахаров в зернах кофе достигает 0,7-1%. В процессе обжаривания происходят глубокие изменения в составе углеводного комплекса кофе. Например, сахароза, являющаяся основным компонентом этого комплекса, практически полностью исчезает (ее остается 0,56%). В начале обжаривания также резко падает содержание моносахаридов, но к концу процесса оно существенно возрастает: 1,25% глюкозы, 1,1% фруктозы, 0,15% арабинозы и 0,1% галактозы. Колебания в составе и количестве моносахаров в кофе при его тепловой обработке объясняются расходом некоторой их части на процессы карамелизации и меланоидинообразования (в начальной и средней стадиях обжаривания), а затем, при достижении температуры 205-220°C, увеличением их концентрации за счет гидролиза клетчатки, пентозанов и других полисахаридов. С спользованием метода газовой хроматографии изучались химические изменения, происходящие с маннитом и шестью сахаристыми веществами (сахароза, глюкоза, фруктоза, манноза, арабиноза и галактоза) в процессе обжаривания и последующей экстракции зерен зеленого кофе Арабика и Робуста из Бразилии. Показано, что обжаривание приводит к разложению 46% маннита, 98% сахарозы, 94% глюкозы, 88% фруктозы и 82% маннозы, в то время как содержание арабинозы увеличивается в 9 раз. В процессе последующей экстракции в продукте остается 100% маннита и 91% сахарозы, содержание глюкозы, фруктозы, маннозы и арабинозы увеличивается в 16-71 раз. Отмечено, что вся галактоза растворимого кофе образуется на стадии экстракции. Установлено, что нерастворимые в спирте слизистые вещества, обволакивающие поверхность зерен кофе, содержали около 30% пектиновых веществ, почти 8% клетчатки и примерно 18% нейтральных полисахаридов нецеллюлозной природы. Сырые пектины экстрагировали из осадка разбавленной HNO3 при pH 2,5 и температуре 90°C. Они содержали около 60% уроновых кислот с высокой степенью этерификации (около 62%) и средним уровнем ацетилирования (приблизительно 5%). Молекулярная масса пектинов была низкой (12000-29000). Пектины кофе не образуют гелей в присутствии сахарозы при низких значениях pH. Проведено сравнение содержания углеводов в кофейном напитке из зеленого и обжаренного при 95°C в течение 1 часа (или при 180°C в течение 15 минут) молотого кофе Арабика из Колумбии и Робуста из Тонго. Общее содержание углеводов определяли колориметрическим орциноловым методом, состав моносахаридов - анионообменной хроматографией. Метод эксклюзионной хроматографии применяли для изучения распределения углеводов по молекулярной массе. Отмечено, что кофе содержит два основных экстрагируемых полисахарида - арабиногалактаны и галактоманнаны. Арабиногалактаны хорошо извлекаются из зеленого кофе при высокой температуре экстракции (свыше 95°C). Обжаривание кофе приводит к уменьшению молекулярной массы этих веществ с 200-200000 до 200-50000 и уменьшению соотношения остатков арабинозы в галактановой цепи с 1:7 до 1:12. Арабиноза и отдельные ветви арабиногалактанов выделяются в виде свободных моносахаридов или как небольшие олигосахариды со степенью полимеризации менее 6. Кроме того, арабиноза подвергается тепловому разложению. Высокая температура экстракции приводит также к улучшению извлечения из кофе галактоманнанов, но сужает диапазон молекулярных масс экстрагируемых веществ с 800-80000 (при 95°C) до 200-20000 (при 180°C). 

В сырых зернах кофе содержание таннина варьируется в широких пределах - от 3,6 до 7,7%. В процессе обжаривания (особенно при температуре 175-205°С) количество таннина резко уменьшается и в готовом продукте его остается 0,5-1,0%. Это весьма лабильный компонент кофе, который интенсивно окисляется за 5-8 минут тепловой обработки при температуре 80-125°C. На этой стадии активно дествует полифенолоксидаза, которая способствует окислению таннина. В дальнейшем протекает неферментативное превращение таннина, в результате которого образуются продукты вторичного превращения - темноокрашенные пигменты. Снижение содержания таннина во время обжаривания не считается отрицательным фактором, так как способствует формированию вкуса и цвета кофе.Однако при чрезмерном нагревании таннин полностью разлагается. Пустой или плоский вкус обжаренного кофе иногда можно частично объяснить исчезновением таннина. Поэтому, учитывая разложение и хлорогеновой кислоты, важно в готовом продукте сохранить хотябы часть фенольных соединений. Методами ВЭЖХ, ЖХ/МС, ГХ/МС и УФ-спектроскопии проведено изучение содержания фенольных кислот в зернах 56 популяций дикорастущего кофе (Mascarocoffea) на Мадагаскаре и 9 популяций (Eucoffea) в Африке. В большинстве исследованных проб обнаружены феруловая и n-кумаровая кислоты, а кофейная кислота содержалась во всех пробах. Основными фенольными кислотами в кофе Mascarocoffea являются o-кумаровая, 3,4-диметоксикоричная и 3,4,5-триметоксикоричная. Содержание синапиевой и 4-метоксикоричной кислот незначительно. С применением реаентов Портера изучено влияние 14-дневной сушки на воздухе мякоти плодов трех сортов кофе из Венесуэлы (C. Arabica var. Red Bourbon, Red Catuai, Yellow Catuai) на содержание в них конденсированных таннинов. Доказано, что этот показатель в свежей мякоти плодов кофе составляет 0,6-0,91%, а после высушивания - 0,88-1,19% в перечете на сухое вещество. Для количественного определения хлорогеновой кислоты в зеленых зернах кофе были изучены 5 способов очистки: растворителем, фильтрованием через патрон C18 и с использованием комбинаций различных реагентов. На основании исследований выбран и рекомендован хроматографический метод с использованием в качестве растворителей метанола и фосфорной кислоты. Показана возможность установления качества и происхождения зеленого и обжаренного кофе по составу хлорогеновых кислот, найденных методом ВЭЖХ с УФ-детектированием и обработкой полученных данных способом главных компонент. Индикацию хлорогеновых кислот с помощью УФ-детектора при длине волны325 нм проводили для кофе разного происхождения (Камерун, Уганда, Гаити, Эфиопия и т. д.), а также отдельных сортов кофе в их смесях. Метод ВЭЖХ был использован для идентификации и количественного определния фенольных соединений в зернах кофе различных сортов из различных географических районов. Например, кофе сортов Робуста и Арабика можно различить по содержанию 3,4-диметоксицинамовой кислоты, которое в зеленых зернах этих сотов составляло сответственно 0,237-0,691 и 0,016-0,095 г/кг.  

Хлорогеновые кислоты составляют основную часть феннольных соединений. Хлорогеновые кислоты представляют собой моно- и диэфиры коричной и хинной кислот. В кофейных зернах обнаружены также эфиры хинной кислоты с кофейной и феруловой кислотами. Хлорогеновая кислота. В кристаллическом виде она была впервые выделена из кофейных зерен Гортером. Ее структура была установлена как кофеил-3-хинная кислота. Хлорогеновые кислоты включают в себя около 10 соединений, содержащихся в кофе, а подобные им соединения обнаружены и в других соединениях. Изохлорогеновая кислота. Фактически является смесью дикофеилхинной кислоты. Она состоит в основном из трех фракций дикофеилхинной кислоты и существует в виде ее изомеров. Зерна сырого кофе содержат примерно 7-10% хлорогеновых кислот. В кофе вида Канифора (Робуста) концентрация их больше (9-11%), чем в кофе вида Арабика (5,5-8%). Основную долю хлорогеновых кислот составляют кофеилхинные кислоты (хлорогенвая и нехлорогеновая). Так, в кофе вида Арабика их содержание 5,5-7%, а вида Канифора - 8-9%. Затем следуют дикофеилхинные кислоты (изохлоргеновые кислоты): в кофе вида Арабика их 0,5-0,6%, вида Канифора - 1,4-1,7%. В меньшем количестве в кофе содержится ферулоилхинная кислота: в кофе вида Арабика - 0,2-0,25%, вида Канифора - 0,6-1,2%. Содержание хлорогеновых кислот устанавливают методами газовой и тонкослойной хроматографии. Колориметрическим методом определено, что количество дубильных веществ в кофе вида Арабика (Индия) составляет 6,1-6,36%, вида Канифора (Робуста) первого сорта (Индия) - 6,8-7,7%, в кофе Сантос превого сорта (Бразилия) - 3,6-4,6%. Во время обжаривания содержание хлорогеновой кислоты в кофейных зернах резко снижается - на 65-67%, криптолорогеновой - в 2 раза, изохлорогеновой - в 2,5-3 раза. Снижение содержания хлорогеновых кислот происходит за счет их теплового разрушения (заметно возрастает доля кофейной и хинной кислот) и участия в реакциях с аминокислотами, белками с образованием темноокрашенных продуктов. Роль хлорогенвых кислот в формировании цвета кофе во время обжаривания очевидна.  

Стандартным является фотометрический метод определения кофеина в кофе и кофепродуктах. Он основан на спектрофотометрировании хлороформового слоя при 250, 275 или 300 нм. Кофеин экстрагируют из подщелочного водного раствора хлороформа, удаляют растворитель упариванием и сухой остаток экстракта напитка обрабатывают смесью растворов пероксида водорода и соляной кислоты. Эта реакция избирательна, поэтому присутствие в сухом остатке экстракта других соединений не мешает определению. Разработана методика качественного и количественного определений кофеина в кофепродуктах с использованием жидкостной (ЖХ) и тонкослойной (ТСХ) хроматографии. Комплексное их применение для обнаружения кофеина в смеси кофе натурального молотого с суррогатами позволяет более точно определить качественный состав и количество кофеина. На основе изучения ИК-спектров необработанного кофе Робуста и смесей обжаренного кофе Арабика.Робуста в диапазоне 1300-2400 нм выведены специальные уравнения для быстрой оценки содержания кофеина и сухих веществ независимо от географического происхождения кофе. Значения коэффициента корреляции полученных уравнений находится в пределах 0,95-0,99. Для изучения правильности определений рекомендовано использовать уравнения, выделеннве специально для данного типа кофе. Методами ВЭЖХ с электрохимическим детектором и ЖХ/МС/ХМС показано, что кофеин при окислении различных проб кофе (обжаренного, молотого и растворимого) смесью хлорного железа и пероксида водорода эффективно связывает свободные гидроксильные радикалы, образуя 8-оксокофеин. Содержание алкалоида отражает степень окисления кофейного напитка, которая зависит от состояния кислорода, пероксида водорода и металла. 8-Оксокофеин в свежих зеленых зернах кофе не обнаружен, а в обжаренном, молотом и быстрорастворимом кофе концентрация этого вещества составляет 4-35 мг/кг. Разработана новая методика определения тригонеллина и никотиновой кислот в зеленом, обжаренном и быстрорастворимом кофе. Подготовка проб а анализу включает твердофазную экстракцию указанных соединений на поглотительном патроне с обращенной фазой C18. Раделение и анализ тригонеллина, никотиновой кислоты и продуктов их теплового разложения при обжаривании кофе проводили методом ионной эксклюзивной ВЭЖХ. Предложен метод одновременного определения тригонеллина, никотиновой кислоты и кофеина в пробах зеленого и обжаренного кофе, основанный на использовании метода ВЭЖХ с фотодиодным матричным детектором. Указанные соединения из проб извлекают экстракцией кипящей водой. Измерения проводили при длине волны 265 нм. Процентная мера правильности результатов определений тригонеллина, никотиновой кислоты и кофеина составила для зеленого кофе соответсвенно (98±1); (84±5) и (99±1)%, для обжаренного (101±1); (98±) и (99±1)%. Калибровочный график носит линейный характер в диапазоне концентраций тригонеллина 0,15-45 мкг/мл, никотиновой кислоты 0,1-500 мкг/мл и кофеина 0,05-500 мкг/мл. Также был исследован обжаренный кофе выдов Арабика и Робуста различного географического происхождения (всего 29 образцов) на содержание кофеина, тригонеллина и никотиновой кислоты с помощью ВЭЖХ. Режим обжаривания всех образцов был идентичен. Результаты ВЭЖХ были обработаны путем многовариантного и беспараметрического анализа. Исследованные сорта кофе отличались друг от друга содержанием кофеина и тригонеллина. Что касается содержания никотиновой кислоты, то оно не было характерным. Районирование сортов не влияло на свойства кофе.

Наши контакты

8 (916) 205-05-50 (Пн-Пт с 10.00 до 19.00, Сб с 11.00 до 16.00). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Способы оплаты

  social icon

 

Вы можете оплатить покупки наличными при получении, либо выбрать другой удобный способ оплаты.

S5 Box